Архив рубрики: Теория автоматического управления

Разработка нейросетевых моделей диагностирования систем управления турбоагрегатом

В статье предложена иерархическая модель процесса нейросетевого диагностирования систем управления турбоагрегатами. Выделены два уровня обработки данных, которые последовательно оценивают степени принадлежности симптомов к каждой из потенциальных неисправностей и ставят диагноз техническому состоянию. Для ускорения обучения нейронной сети предложен метод многоэтапного тренинга. На примере системы управления газовой турбиной анализируется эффективность предложенной архитектуры интеллектуального диагностического аппарата с сетью прямого распространения и LSTM-сетью.

Доклад представлен на международной научной конференции «IEEE Northwest Russia Conference On Mathematical Methods In Engineering And Technology: ММEТ NW 2018»

Читать далее

Оценка параметров ДУ в Python

Одной из распространенных задач, возникающих при исследовании различных объектов — построение математической модели. Нередко математическая модель представляется в виде системы дифференциальных уравнений, однако непосредственное измерение всех, входящих в них параметров, как правило, невозможно по различным причинам. В таком случае, одним из подходов является проведение идентификационных экспериментов и оценка параметров ДУ путем решения оптимизационной задачи.

В статье рассмотрен простой способ оценки параметров системы ДУ в форме Коши на языке Python.

Читать далее

История развития теории автоматического управления: от автоматики до отказоустойчивого управления

На протяжении всей истории развития технических средств различного назначения существовала необходимость в создании механизмов и алгоритмов управления техническими объектами, в том числе автоматических, т.е. функционирующих без участия человека. Однако несмотря на потребность человечества в управлении различными объектами, история теоретического исследования законов управления насчитывает около 150-170 лет. За это время рассматриваемая научная область прошла процесс преобразования от разрозненного набора методов управления механическими, гидродинамическими и другими системами, до фундаментальной науки, не привязанной к физике объекта управления и оперирующей законами и закономерностями, справедливыми для объектов любой сложности и природы.

Читать далее

Что из себя представляет специальность «Управление в технических системах»

Каждый абитуриент сталкивается с выбором специальности. Кто-то сталкивается непосредственно при подаче документов, кто-то выбирает заранее, но почти у каждого встает один вопрос: «Что из себя представляет специальность X». В этой статье я постараюсь рассказать, что из себя представляет специальность 27.03.04 «Управление в технических системах» бакалавриата и  27.04.04 «Управление в технических системах» магистратуры. В целом, информация, указанная в описаниях на сайте университета справедлива, однако дополнительное субъективное мнение никому еще не мешало.

Эта статья написана по мотивам собственного обучения и многочисленным встречам с абитуриентами и студентами для обобщения мыслей и в помощь будущим студентам в выборе любимой сферы деятельности.

Сразу оговорюсь, что многие факты и все оценочные суждения могут носить субъективный характер, а автор имеет дипломы по этим специальностям и на момент публикации статьи обучается в аспирантуре по специальности 27.06.01 «Управление в технических системах». Кроме того, все сказанное гарантированно только для кафедры АПУ университета СПбГЭТУ «ЛЭТИ».

Читать далее

Устойчивость нелинейных систем

Анализ устойчивости систем является одним из важнейших этапов проектирования систем управления, однако при анализе нелинейных, строго говоря, нет метода отвечающего критериям необходимости и достаточности, а критерии являются, как правило только достаточным (для устойчивости). Исходя из этого, для некоторых систем невозможно однозначно говорить о неустойчивости.

В классической теории управления имеется два основных аналитических метода: первый и второй методы Ляпунова, а также достаточно большое количество модификаций второго метода, как не связанного с линеаризацией.

Рассмотрим применение классических методов Ляпунова.

Первый метод Ляпунова

Позволяет судить об устойчивости положения равновесия по линеаризованным уравнениям. Метод основан на утверждениях:

  • если собственные значения линеаризованной системы имеют отрицательные действительные части (линеаризованная система асимптотически устойчива), то положение равновесия нелинейной системы устойчиво «в малом»;
  • если среди собственных значений линеаризованной системы имеются «правые», то положение равновесия нелинейной системы неустойчиво;
  • если имеются некратные собственные значения на мнимой оси, а остальные — «левые», то в этом критическом случае по линеаризованной модели нельзя судить об устойчивости положения равновесия нелинейной системы.

Таким образом для анализа системы по первому методу Ляпунова необходимо:

  1. Найти положение равновесия системы — движений в системе нет (т.е. скорости и ускорения равны нулю) \[ \frac{\mathrm{d} v_{i}}{\mathrm{d} t}= {0} \]
  2. Линеаризовать систему в окрестности точки равновесия
  3. Записать полученное линеаризованное дифференциальное уравнение в матричной форме (составить матрицу А)
  4. Составить характеристический полином линеаризованной системы: \[ {D(s)}={det(sE-A)} \]
  5. Найти корни характеристического полинома. По виду корней сделать заключение о характере процессов в системе.

Основными недостатками первого метода Ляпунова являются:

  • Если имеется корень на мнимой оси, то невозможно сказать о поведении процессов в системе.
  • Возможно говорить только об устойчивости «в малом», т.е. при больших отклонениях от положения равновесия система может быть неустойчивой.

Пример 1.

Исследуем систему описываемую дифференциальными уравнениями:

\[  \left\{\begin{matrix} \frac{\mathrm{d} v_{1}}{\mathrm{d} t}=-v_{1}-2v_{2} \\ \frac{\mathrm{d} v_{2}}{\mathrm{d} t}=2v_{1}-v_{2}-{v_{1}}^{3} \end{matrix}\right. \]

Шаг 1. Положение равновесия:

Для нахождения точек равновесия левые части уравнений приравниваются к 0, что эквивалентно тому, что переменные состояния являются константами, а все их производные равны 0.

\[  \\v_{1}=const \\v_{2}=const \\{v_{1}}^{*}={v_{2}}^{*}=0 \]

Шаг 2. Линеаризация для малых отклонений

Для линеаризации малых отклонений в точке равновесия старшие степени переменных, входящих в уравнения принимаются равными нулю.

\[ \left\{\begin{matrix} \frac{\mathrm{d} v_{1}}{\mathrm{d} t}=-v_{1}-2v_{2} \\ \frac{\mathrm{d} v_{2}}{\mathrm{d} t}=2v_{1}-v_{2} \end{matrix}\right. \]

Шаг 3. Линеаризованное управление в матричной форме

Преобразуем полученную линейную систему уравнений в матричный вид.

\[ A=\begin{bmatrix} -1 & -2 \\ 2 & -1 \end{bmatrix} \]

Шаг 4. Характеристический полином

\[ det(sE-A)=\begin{vmatrix} s+1 & 2 \\ -2 & s+1 \end{vmatrix}=(s+1)(s+1)+4=(s+1)^{2}+4 \]

Шаг 5. Корни характеристического полинома

Приравниваем характеристический полином к 0 и находим корни уравнения.

\[ \\(s+1)^{2}+4=0 \\(s+1)^{2}=-4 \\s+1=\pm 2j \\ s_{1,2}=-1\pm 2j \]

Заключение об устойчивости системы

в данном примере при линеаризации система имеет два корня с отрицательной вещественной частью, т.е. мы можем сказать, что система устойчива «в малом» (при больших отклонениях система может быть неустойчива).

Подтвердим теоретический вывод компьютерным моделированием (построением фазового портрета)

Устойчивая "в малом" система

При этом, при начальных условиях, находящиеся дальше от точки равновесия, система становится неустойчивой

Пример 2. Нелинейный осциллятор

В качестве второго примера рассмотрим нелинейный осцилятор описываемый системой дифференциальных уравнений:

\[ \left\{\begin{matrix} \frac{\mathrm{d} v_{1}}{\mathrm{d} t}=v_{2} \\ \frac{\mathrm{d} v_{2}}{\mathrm{d} t}=-v_{1}-{v_{2}}^{3} \end{matrix}\right. \]

Аналогично первому примеру выполняем последовательность шагов

Шаг 1. Положение равновесия:

\[ \\v_{1}=const \\v_{2}=const \\{v_{1}}^{*}={v_{2}}^{*}=0 \]

Шаг 2. Линеаризация для малых отклонений

\[ \left\{\begin{matrix} \frac{\mathrm{d} v_{1}}{\mathrm{d} t}=v_{2} \\ \frac{\mathrm{d} v_{2}}{\mathrm{d} t}=-v_{1} \end{matrix}\right. \]

Шаг 3. Линеаризованное управление в матричной форме

\[ A=\frac{\mathrm{d} }{\mathrm{d} t}\begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix}=\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}*\begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix} \]

Шаг 4. Характеристический полином

\[ det(sE-A)=\begin{vmatrix} s & -1 \\ 1 & s \end{vmatrix}=s^{2}+1 \]

Шаг 5. Корни характеристического полинома

\[ s_{1,2}=\pm j \]

Заключение об устойчивости системы

Рассматриваемая система является критическим случаем о ее устойчивости невозможно судить по линеаризованным уравнениям, применяемым в первом методе Ляпунова.

Второй метод Ляпунова

Второй метод Ляпунова не связан с линеаризацией системы, поэтому также называется прямым методом.

Для начала необходимо ввести понятия знакоопределенной, знакопостоянной и знакопеременной функций. Пусть имеется функция нескольких переменных:

\[ V=V\left (  v_{1}, v_{2},…, v_{n}\right ) \]

Функция \(V \) называется знакоопределенной в некоторой области, если она во всех точках этой области вокруг начала координат сохраняет один и тот же знак и нигде не обращается в нуль, кроме только самого начала координат

\[ \left ( V\left ( \bar{0} \right )=0 \right ) \]

Функция \(V \) называется знакопостоянной, если она сохраняет один и тот же знак, но может обращаться в нуль не только в начале координат, но и в других точках данной области.

Функция \(V \) называется знакопеременной, если она в данной области вокруг начала координат может иметь разные знаки.

Теорема Ляпунова об устойчивости нелинейных систем

Если при заданных в форме

\[ \left\{\begin{matrix} \frac{\mathrm{d} v_{1}}{\mathrm{d} t}= \varphi _{1}\left ( v_{1}, v_{2},…, v_{n}\ \right ) \\ \frac{\mathrm{d} v_{2}}{\mathrm{d} t}= \varphi _{2}\left ( v_{1}, v_{2},…, v_{n}\ \right ) \\ \vdots \\ \frac{\mathrm{d} v_{n}}{\mathrm{d} t}= \varphi _{n}\left ( v_{1}, v_{2},…, v_{n}\ \right ) \end{matrix}\right. \]

уравнениях системы n-го порядка можно подобрать такую знакоопределенную функцию Ляпунова

\[ V\left ( v_{1}, v_{2},…, v_{n}\right ), \]

чтобы ее производная по времени

\[ W\left (  v_{1}, v_{2},…, v_{n}\right ) \]

тоже была знакоопределенной (или знакопостоянной), но имела знак противоположный знаку \(V\), то данная система устойчива.

Для упрощения скажем, что функция Ляпунова должна быть положительной знакоопределенной функцией. Тогда условия теоремы Ляпунова будут выглядеть следующим образом:

Для устойчивости положения равновесия достаточно существования дифференцируемой функции

\[  V\left (  v_{1}, v_{2},…, v_{n}\right ), \]

называемой функцией Ляпунова, удовлетворяющей в окрестности начала координат следующим условиям:

  1.  \(V\left (  v_{1}, v_{2},…, v_{n}\right ) \geq 0\)  причем \(V=0\) лишь при следующем условии, означающем что функция \(V\) имеет строгий минимум в начале координат. \[ \bar{v}= \begin{bmatrix} v_{1} \\ \vdots \\ v_{n} \end{bmatrix} = \bar{0} \]
  2. Производная функции по времени \[ \frac{\mathrm{d} V\left ( \bar{v} \right )}{\mathrm{d} t}=\sum_{i=1}^{n}\frac{\partial V}{\partial v_{i}}\frac{\mathrm{d} v_{i}}{\mathrm{d} t}=\begin{pmatrix} \frac{\partial V}{\partial v_{1}} & \frac{\partial V}{\partial v_{2}} & \cdots  & \frac{\partial V}{\partial v_{i}}\end{pmatrix}\begin{bmatrix}\frac{\mathrm{d} v_{1}}{\mathrm{d} t}\\ \frac{\mathrm{d} v_{2}}{\mathrm{d} t}\\ \vdots \\ \frac{\mathrm{d} v_{n}}{\mathrm{d} t}\end{bmatrix} \] в силу дифференциального уравнения \(\frac{\mathrm{d} \bar{v}}{\mathrm{d} t}=\bar{\varphi }\left ( \bar{v} \right ) \) является отрицательной знакопостоянной функцией, т.е. \[ \frac{\mathrm{d} V\left ( \bar{v} \right )}{\mathrm{d} t}=grad\bar{V}\cdot \frac{\mathrm{d} \bar{v}}{\mathrm{d} t}=grad\bar{V}\cdot \bar{\varphi}\left ( \bar{v} \right )\leq 0 \] при \(t\geq t_{0}\)

Таким образом, условия:

  1. \(\frac{\mathrm{d} V\left ( \bar{v} \right )}{\mathrm{d} t}\leq 0\) и функция \(V\left (  v_{1}, v_{2},…, v_{n}\right ) \) является положительной знакоопределенной — это является достаточным условием устойчивости
  2. \(\frac{\mathrm{d} V\left ( \bar{v} \right )}{\mathrm{d} t} \) — отрицательно определенная — это является достаточным условием асимптотической устойчивости.
  3. \(\left \| v \right \|\rightarrow \infty : \frac{\mathrm{d} V\left ( \bar{v} \right )}{\mathrm{d} t}\rightarrow \infty \) — достаточное условие устойчивости «в целом».

Для анализа системы по второму методу Ляпунова необходимо:

  1. Выбрать функцию Ляпунова от n переменных, где n- порядок системы.
  2. Найти частные производные по переменным.
  3. Вычислить производную функции по времени \(\frac{\mathrm{d} V\left ( \bar{v} \right )}{\mathrm{d} t}\). Проанализировать полученный знак производной.

Из-за того, что второй метод Ляпунова не связан с линеаризацией, он считается универсальным. Однако он имеет ряд недостатков:

  • Нет общих требований по выбору функции V
  • Достаточный характер утверждения (если условия не выполняются, то об устойчивости ничего сказать нельзя, а можно посоветовать подобрать другую функцию \(V \))

Пример 3. Нелинейный осциллятор

Проанализируем систему из примера (2).

Шаг 1.  Функция Ляпунова

Для начала необходимо выбрать функцию Ляпунова от 2-х переменных (т.к. два вектора состояния):

\[  V\left (  v_{1}, v_{2}\right )=\frac{1}{2}\left ( {v_{1}}^{2}+{v_{2}}^{2} \right ) \]

Шаг 2. Частные производные

\[  \\ \frac{\partial V}{\partial v_{1}}=\frac{1}{2}\left ( 2\cdot v_{1} + 0 \right )=v_{1} \\ \frac{\partial V}{\partial v_{2}}=\frac{1}{2}\left ( 0+ 2\cdot v_{2} \right )=v_{2} \]

Шаг 3. Производная функции

\[  \frac{\mathrm{d} V\left ( \bar{v} \right )}{\mathrm{d} t}=\frac{\partial V}{\partial v_{1}}\cdot \frac{\mathrm{d} v_{1}}{\mathrm{d} t}+ \frac{\partial V}{\partial v_{2}}\cdot \frac{\mathrm{d} v_{2}}{\mathrm{d} t}= v_{1}\cdot \frac{\mathrm{d} v_{1}}{\mathrm{d} t} + v_{2}\cdot \frac{\mathrm{d} v_{2}}{\mathrm{d} t} \]

Подставим в выражение значения исходя из ДУ:

\[ \frac{\mathrm{d} V\left ( \bar{v} \right )}{\mathrm{d} t}=v_{1}\cdot v_{2}+v_{2}\cdot \left ( -v_{1}-{v_{2}}^{3} \right )=v_{1}\cdot v_{2}-v_{1}\cdot v_{2}-{v_{2}}^{4}=-{v_{2}}^{4}\leq 0 \]

Заключение об устойчивости системы

Исследовав систему первым методом Ляпунова мы не смогли сделать конкретный вывод об устойчивости системы, что позволил нам сделать второй метод Ляпунова. В результате мы можем сделать вывод, что система является асимптотически устойчивой.

Аналогично проверим с помощью моделирования:

Пример 4.

Рассмотрим систему, описываемую следующей системой дифференциальных уравнений:

\[ \left\{\begin{matrix}\frac{\partial v_{1}}{\partial t}=-v_{1}\cdot {v_{2}}^{2}\\ \frac{\partial v_{2}}{\partial t}=3\cdot v_{2}\cdot {v_{1}}^{2}\end{matrix}\right. \]

Очевидно, что применение первого метода Ляпунова невозможно, т.к. матрица А состоит из нулей, а, следовательно, собственные значения равны нулю. Поэтому применим второй метод Ляпунова:

Шаг 1.  Функция Ляпунова

Выбор функции Ляпунова второго порядка

\[ V\left (  v_{1}, v_{2}\right )= a{v_{1}}^{2}+{v_{2}}^{2} \]

 

Шаг 2. Частные производные

\[  \\ \frac{\partial V}{\partial v_{1}}=2av_{1} \\\frac{\partial V}{\partial v_{2}}=2v_{2} \]

Шаг 3. Производная функции

\[  \frac{\mathrm{d} V\left ( \bar{v} \right )}{\mathrm{d} t}=2av_{1}\cdot \left ( -v_{1}\cdot {v_{2}}^{2} \right )+2v_{2}\cdot 3 v_{2} {v_{1}}^{2}=-2a{v{1}}^{2}{v_{2}}^{2}+6{v_{1}}^{2}{v_{2}}^{2}\leq 0 \]

При  \(a=3\) имеет место асимптотическая устойчивость.

Заключение об устойчивости системы

Система является устойчивой.

Фазовый портрет системы выглядит следующим образом:

Фазовый портрет системы из примера 4

Автоколебания. Устойчивость

В заключительной части серии статей про автоколебания рассмотрим способы исследования устойчивости  периодических режимов, основанные на методе гармонического баланса.

Читать далее

Структурная схема нелинейной модели

Автоколебания. Определение параметров периодических режимов

В третий части цикла статей об автоколебаниях рассматриваются метод определения параметров периодических режимов Е.П. Попова.

Кроме этого метода известны еще, например, методы Л. С. Гольдфарба и А.А. Вавилова, но они являются графическими и, в силу развития вычислительной техники, не актуальны.

Читать далее

график усиления в зависимости от амплитуды

Автоколебания. Гармоническая линеаризация

Во второй части рассмотрим гармоническую линеаризацию нелинейного элемента, которая, по сути, является поиском эквивалента нелинейного элемента для некоторого множества гармонических сигналов. В рассмотрении ограничимся симметричными колебаниями.

\[ x(t)= A sin(\omega t) \]

Читать далее

Структурная схема гармонически линеаризованной системы

Автоколебания. Введение

Начинаем серию статей, посвященных автоколебаниям с точки зрения теории управления. Статьи рассчитаны на подготовленного читателя и несут значительную теоретическую нагрузку, хотя и не включают полного аналитического обоснования всех положений.

Автоколебания — это периодические процессы в нелинейных системах, часто встречаются в системах. В практике автоматического управления важен автоколебательный режим систем. В нелинейных системах, в отличии от линеаризованных моделей при потере устойчивости не возникает неограниченного роста значений переменных состояния, а при колебательном характере неустойчивости колебания расходятся до амплитуды, определяемой параметрами системы. Кроме того, автоколебательные режимы часто используются для регулирования различных физических параметров технологических процессов, например температуры. При этом учитываются ограничения на допустимые частоты и амплитуды колебаний.

Читать далее

Синтез системы стабилизации комплексно-частотным методом

Рассмотрим метод частотного синтеза корректирующих устройств основанный на анализе логарифмических амплитудных частотных характеристик (ЛАЧХ) и корректировке ее до желаемого вида [1]. В качестве примера объекта используется маятник на каретке. Читать далее