Архивы автора: Александр Синица

Инновационный метод сегментации опухолей на основе нечеткого рангового ансамбля

Наша команда исследователей представила передовой метод анализа медицинских изображений в статье «A fuzzy rank-based ensemble of CNN models for MRI segmentation», опубликованной в журнале Biomedical Signal Processing and Control. Метод основан на нечетком ранговом ансамблировании трёх современных нейронных сетей: SegResNet, UNETR и SwinUNETR, и позволяет повысить точность диагностики опухолей.

Ранее этот подход был предложен в другой статье научной группы для классификации цитологии шейки матки. В текущем исследовании метод обобщён до задачи сегментации, что делает его универсальным для анализа медицинских изображений, включая МРТ сканирование мозга.

Результаты исследований, опубликованные в статье, демонстрируют, что предложенный подход достигает максимального уровня производительности после примерно 80 эпох обучения, при этом не наблюдается признаков переобучения. В работе также подчеркивается важность оптимизации ресурсов в прикладных исследованиях, что делает метод применимым для широкого круга задач.

Детали исследования, включая доступ к исходным данным и тренировочным пайплайном, можно найти на платформе Kaggle (см. статью), а реализацию ансабля для Pytorch на GitHub.

Локальный LLM-ассистент в Visual Studio Code

В заметке рассмотрим пример, как можно быстро настроить локального ассистента на базе большой языковой модели (LLM) для написания код в Visual Studio Code.

Читать далее

Направленные состязательные (Targeted adversarial) атаки с использование Keras и TensorFlow

В прошлом руководстве была рассмотрена базовая состязательная атака на сверточную нейронную сеть (CNN), однако, она (атака) обладала существенным недостатком: замещающий (целевой) класс был заранее неизвестен и неконтролируем. В этой заметке будет рассмотрена направленная атака, то есть та, в которой целевой класс контролируется атакующим.

Читать далее

Состязательные (Adversarial) атаки с помощью Keras и TensorFlow

В этом руководстве вы узнаете, как взламывать deep-learning модели для анализа изображений с помощью состязательных (Adversarial) атак. В заметке показано, как реализовывать атаки с использованием библиотек глубокого обучения Keras и TensorFlow.

фото: ГУ МВД РФ по Волгоградской области, pixabay.com
Читать далее

Сверточные нейронные сети для компьютерного зрения [1.1] Классификация изображений: Data-driven подход, k-Nearest Neighbor, train/val/test разделение

Это вводная статья, призванная познакомить людей, не знакомых с компьютерным зрением, с проблемой классификации изображений и data-driven подходом.

Читать далее

Сверточные нейронные сети для компьютерного зрения [0.4] Инструкция по использованию Google Cloud

Для проектов и задач данного курса, авторы предлагают использовать Google Compute Engine для разработки и тестирования ваших реализаций, однако, по нашему мнению это не самый лучший вариант. В этом руководстве перечислены необходимые шаги для работы над заданиями с помощью Google Cloud. Мы рассчитываем, что изучение этого руководства займет около 1 часа. Не пугайтесь шагов, мы постарались сделать это руководство наиболее подробным, чтобы у вас было меньше шансов застрять на определенном шаге. 

Это руководство говорит о том, как настроить собственный экземпляр Google Compute Engine (GCE) для работы с заданиями. После первой регистрации, вы по умолчанию получите $300 от Google.

Читать далее

Сверточные нейронные сети для компьютерного зрения [0.3] Инструкция по использованию IPython

В этом разделе будет рассмотрены IPython notebooks (часто более известный как Jupyter notebooks) для работы над задачами курса. IPython notebook позволяет писать и исполнять Python код в веб-браузере. IPython notebooks позволяет очень легко править код и выполнять его частями; По этой причине IPython notebooks широко используется в научных вычислениях.

Читать далее

Сверточные нейронные сети для компьютерного зрения [0.2] Инструкция по использованию Python/Numpy

Оригинал инструкции был составлен Джастином Джонсоном.

Мы будем использовать язык программирования Python для всех заданий этого курса. Python это отличный универсальный язык программирования сам по себе, но с помощью некоторых популярных библиотек (numpy, scipy, matplotlib) он становиться мощным окружением для научных вычислений.

Несмотря на предположение, что читатель имеет некоторый опыт использования Python и numpy, для этот раздел послужит быстрым вводным курсом по языку программирования Python и использовании Python для научных вычислений для читателей с недостаточными навыками.

Читать далее

Сверточные нейронные сети для компьютерного зрения [0.1] Введение и установка

Эта статья открывает цикл статей, основанных на переводе лекций и практических заданий курса CS231n Convolutional Neural Networks for Visual Recognition Стэнфордовского университета, этот курс является вводным в использование сверточных нейронных сетей для задач компьютерного зрения. В первой части рассмотрены вопросы структуры курса и подготовки рабочей среды. В рамках перевода некоторые термины не будут переводится в силу редкости русскоязычных ресурсов и повсеместного использования оригинальных названий. Кроме того, статьи не являются точным переводом и могут быть дополнены авторами. 

Отдельная просьба к читателям: при наличии вопросов, задавайте их в сообщениях сообщества в VK.

Читать далее

Automatic Estimation of Dog Age: The DogAge Dataset

Automatic age estimation is a challenging problem attracting attention of the computer vision and pattern recognition communities due to its many practical applications. Artificial neural networks, such as CNNs are a popular tool for tackling this problem, and several datasets which can be used for training models are available.
Despite the fact that dogs are the most well studied species in animal science, and that ageing processes in dogs are in many aspects similar to those of humans, the problem of age estimation for dogs has so far been overlooked. In this paper we present the DogAge dataset and an associated challenge, hoping to spark the interest of the scientific community in the yet unexplored problem of automatic dog age estimation.

Читать далее