Архив рубрики: Интеллектуальные системы

Разработка нейросетевых моделей диагностирования систем управления турбоагрегатом

В статье предложена иерархическая модель процесса нейросетевого диагностирования систем управления турбоагрегатами. Выделены два уровня обработки данных, которые последовательно оценивают степени принадлежности симптомов к каждой из потенциальных неисправностей и ставят диагноз техническому состоянию. Для ускорения обучения нейронной сети предложен метод многоэтапного тренинга. На примере системы управления газовой турбиной анализируется эффективность предложенной архитектуры интеллектуального диагностического аппарата с сетью прямого распространения и LSTM-сетью…. Читать далее »

Интеллектуализация систем отказоустойчивого управления

Требования к надежности технических систем различного назначения предъявляются с целью обеспечения безопасности или минимизации экономических рисков (потерь, связанных с отказом системы). Обеспечение отказоустойчивости за счет аппаратного резервирования часто неприемлемо или нецелесообразно по экономическим причинам или ограничения массы и габаритов. Альтернативой являются отказоустойчивые системы управления с алгоритмическим резервированием, которые при выявлении неисправности переключаются на специализированный алгоритм. Второй подход (так называемые толерантные системы… Читать далее »

Основы LSTM нейронных сетей

Рекуррентные нейронные сети Человек не начинает каждый момент свое мышление с нуля. В то время, как вы читаете эту статью, вы воспринимаете каждое слово, основываясь на понимании значения предыдущих слов. Вы не забываете все и не начинаете анализировать каждое слово в отдельности. В целом, все ваши мысли имеют последствия (откладываются в памяти).

Нейронные сети в MatLab

Экран приветствия утилиты ntstool

В этой статье мы рассмотрим возможности использования одного из основных инструментов MatLab для проектирования и обучения нейронных сетей Neural Time Series (ntstool) как с помощью GUI, так и с помощью программного кода (а также коснемся расширения возможностей проектирования с помощью программного кода)

Нейронная сеть прямого распространения в CNTK

Задачей этого руководства является знакомство с методами быстрого проектирования нейронных сетей CNTK для решения задачи классификации. Вы можете пропустить Введение, если вы уже разобрались с руководством по бинарной классификации или аналогичными руководствами по машинному обучению.

Линейный бинарный классификатор в CNTK

Это пособие направлено на новичков в машинном обучении, решивших начать свой путь с CNTK. После изучения материала, вы сможете обучать простые, однако достаточно мощные модели машинного обучения, используемые в науке и промышленности в самых разнообразных задачах. Модель обучается на массиве данных наиболее быстрым способом, основываясь на доступных вам вычислительных мощностях (один или нескольлко CPU, GPU или кластер из CPU или… Читать далее »

Установка Microsoft Cognitive Toolkit (CNTK) для Windows

Рассмотрим установку Microsoft Cognitive Toolkit (CNTK) на основе дистрибутива, подготовленного разработчиками. Он предназначено для установки на один ПК . Microsoft Cognitive Toolkit проверен на Windows, 8.1, Windows 10 и Windows Server 2012 R2.