[Перевод] DogAge Challenge

Эта страница является переводом условий нашего соревнования на конференции ICANN19. Оригинал.

Добро пожаловать на страницу соревнования по машинному обучению «Automatic Estimation of Dog Age»

Автоматическая оценка возраста является сложной проблемой, привлекающей внимание ученых, занимающихся вопросами компьютерного зрения и распознавания образов из-за множества практических применений. Искусственные нейронные сети, такие как CNN, являются популярным инструментом для решения подобных проблем, а нами предлагается несколько наборов данных, которые можно использовать для обучения моделей.

Несмотря на то, что собаки являются наиболее хорошо изученными видами в науке о животных, и что процессы старения у собак во многих аспектах сходны с таковыми у людей, проблема оценки возраста собак до сих пор игнорируется.

Целью этого соревнования является разработка моделей, которые будут точно прогнозировать возраст собаки по ее изображению.

Это соревнование основано на наборе данных DogAge, который был тщательно собран в сотрудничестве ученых, работающих в области информационных технологий и исследований животных. Датасет содержит изображения собак, сопоставленных с одним из трех классов: молодые (от 0 до 2 лет), взрослые (от 2 до 5 лет) или старые (> 6 лет).

В настоящее время набор данных состоит из двух частей:

  1. Экспертные данные: содержит 1373 изображения, собранные учеными и включает в себя домашних собак, собак из приютов, лабораторий, кинологических организаций и коммерческих питомников. Их возраст и разделение на три группы были тщательно проверены. Изображения в основном являются качественными портретами с мордой собаки, направленной вверх.
  2. Данные Pet finder: содержит 26190 изображений, собранных с помощью API Petfider, портала для поиска домашних животных. Разделение собак на группы не проверено, а сами собаки сняты с разнообразных углов и расстояний. Необработанные данные были очищены: удалены фотографии с более чем одной собакой, содержащие других домашних животных или большие части людей, а также изображения низкого качества.

Две части набора тренировочных данных можно найти здесь.

Организаторы

Данное соревнование организовано:

  • ICANN’19: International Conference on Artificial Neural Networks
  • Tech4Animals Lab, University of Haifa
  • ETU “LETI” St. Petersburg
  • School of Biology and Environmental Sciences, University of Salford

Важные даты:

  • Представление решения открывается: 1 мая 2019 г.
  • Срок подачи решения истекает 10 сентября 2019 г.
  • Объявление победителя: 14-17 сентября, на ICANN’19

Победитель будет определен в соответствии с критериями, определенными ниже, и получит приз. Ожидается, что победитель, а также другие участники представят статьи, описывающие их методологические подходы, для публикации в рецензируемом журнале (обсуждается).

Критерием успеха будет достижение как минимум 60% средней точности (мАР). Среди них лучший результат mAP будет выбран в качестве финального победителя.

Заметка дополняется